skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poudel, Tej_P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Brintroduction and Li+deficiency, is explored. The optimized Li3‐3yHo1+yCl6‐xBrxachieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Brintroduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3yHo1+yCl6‐xBrxalso demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries. 
    more » « less
  2. Abstract The performance of all‐solid‐state batteries (ASSBs) relies on the Li+transport and stability characteristics of solid electrolytes (SEs). Li3PS4is notable for its stability against lithium metal, yet its ionic conductivity remains a limiting factor. This study leverages local structural disorder via O substitution to achieve an ionic conductivity of 1.38 mS cm−1with an activation energy of 0.34 eV for Li3PS4−xOx(x = 0.31). Optimal O substitution transforms Li+transport from 2D to 3D pathways with increased ion mobility. Li3PS3.69O0.31exhibits improvements in the critical current density and stability against Li metal and retains its electrochemical stability window compared with Li3PS4. The practical implementation of Li3PS3.69O0.31in ASSBs half‐cells, particularly when coupled with TiS2as the cathode active material, demonstrates substantially enhanced capacity and rate performance. This work elucidates the utility of introducing local structural disorder to ameliorate SE properties and highlights the benefits of strategically combining the inherent strengths of sulfides and oxides via creating oxysulfide SEs. 
    more » « less
  3. Abstract To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br.6Li NMR corroborates swift Li+migration between PS43−and Br, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Brincorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE  showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs. 
    more » « less